41 research outputs found

    The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Get PDF
    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage

    A single editing event is a prerequisite for efficient processing of potato mitochondrial phenylalanine tRNA.

    No full text
    In bean, potato, and Oenothera plants, the C encoded at position 4 (C4) in the mitochondrial tRNA Phe GAA gene is converted into a U in the mature tRNA. This nucleotide change corrects a mismatched C4-A69 base pair which appears when the gene sequence is folded into the cloverleaf structure. C-to-U conversions constitute the most common editing events occurring in plant mitochondrial mRNAs. While most of these conversions introduce changes in the amino acids specified by the mRNA and appear to be essential for the synthesis of functional proteins in plant mitochondria, the putative role of mitochondrial tRNA editing has not yet been defined. Since the edited form of the tRNA has the correct secondary and tertiary structures compared with the nonedited form, the two main processes which might be affected by a nucleotide conversion are aminoacylation and maturation. To test these possibilities, we determined the aminoacylation properties of unedited and edited potato mitochondrial tRNAPhe in vitro transcripts, as well as the processing efficiency of in vitro-synthesized potato mitochondrial tRNAPhe precursors. Reverse transcription-PCR amplification of natural precursors followed by cDNA sequencing was also used to investigate the influence of editing on processing. Our results show that C-to-U conversion at position 4 in the potato mitochondrial tRNA Phe GAA is not required for aminoacylation with phenylalanine but is likely to he essential for efficient processing of this tRNA

    EDITING OF PLANT MITOCHONDRIAL tRNAs

    No full text

    Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants

    No full text
    Aminoacyl-tRNAs are generally formed by direct attachment of an amino acid to tRNAs by aminoacyl-tRNA synthetases, but Gln-tRNA is an exception to this rule. Gln-tRNAGln is formed by this direct pathway in the eukaryotic cytosol and in protists or fungi mitochondria but is formed by an indirect transamidation pathway in most of bacteria, archaea, and chloroplasts. We show here that the formation of Gln-tRNAGln is also achieved by the indirect pathway in plant mitochondria. The mitochondrial-encoded tRNAGln, which is the only tRNAGln present in mitochondria, is first charged with glutamate by a nondiscriminating GluRS, then is converted into Gln-tRNAGln by a tRNA-dependent amidotransferase (AdT). The three subunits GatA, GatB, and GatC are imported into mitochondria and assemble into a functional GatCAB AdT. Moreover, the mitochondrial pathway of Gln-tRNAGln formation is shared with chloroplasts as both the GluRS, and the three AdT subunits are dual-imported into mitochondria and chloroplasts

    A human pathology-related mutation prevents import of an aminoacyl-tRNA synthetase into mitochondria

    No full text
    Mutations in the nuclear gene coding for the mitochondrial aspartyl-tRNA synthetase, a key enzyme for mitochondrial translation, are correlated with leukoencephalopathy. A Se
    corecore